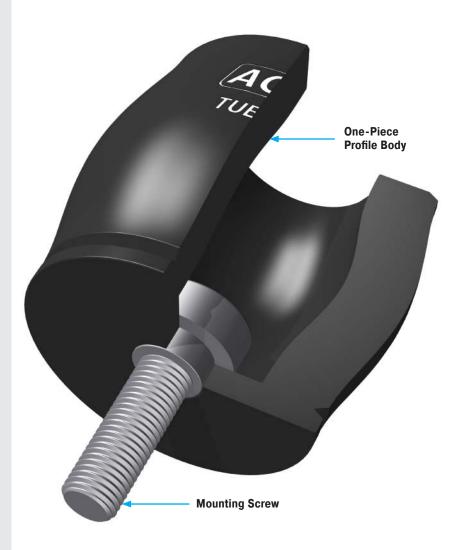
# TUBUS-Series Type TA Profile Damper Axial Damping

The **profile damper type TA** from the innovative ACE TUBUS series is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer.

As a result of the degressive damping characteristic it provides a high energy absorption at the beginning of its stroke. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to 90 °C.


The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100% of the incoming energy.

The **space-saving package size** ranges from Ø 12 mm up to Ø 116 mm and is very simply and quickly installed with the supplied specially stepped mounting screw.

The TA series have been specially developed to provide **maximum energy capacity** in the **minimum mounting space** in the capacity range from 2 Nm up to 2000 Nm.

Life expectancy is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.



**Impact velocity range:** Up to max. 5 m/s

**Environment:** Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

**Capacity rating:** For emergency use only (1 cycle) it is possible to exceed the  $W_3$  rating by +40 %.

Mounting: In any position

**Dynamic force range:** 980 N to 82000 N **Operating temperature range:** -40 °C to 90 °C

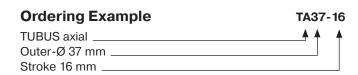
**Energy absorption:** 

40 % to 66 %

Material hardness rating:

Shore 55D

Max. torque:


M3: 2 Nm M4: 4 Nm M5: 6 Nm M6: 10 Nm

M8: 25 Nm M12: 85 Nm M16: 210 Nm

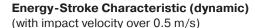
**On request:** Special strokes, -characteristics, -spring rates,

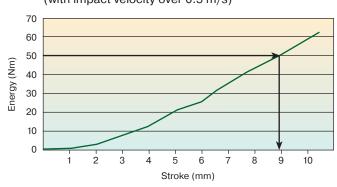
-sizes and -materials.





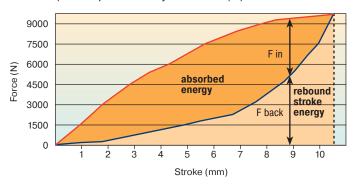
Max.


The calculation and selection of the required profile damper should be carried out or be approved by ACE.


| <b>Dimensions</b> | and | Capacity | Chart |
|-------------------|-----|----------|-------|
|-------------------|-----|----------|-------|

| Туре     | <sup>1</sup> W3<br>Nm/Cycle | $^2\mathrm{W}_3$ Nm/Cycle | Max. Stroke mm | D   | L <sub>1</sub> | М   | L <sub>2</sub> | d <sub>1</sub> | d <sub>2</sub> | Weight <b>kg</b> |
|----------|-----------------------------|---------------------------|----------------|-----|----------------|-----|----------------|----------------|----------------|------------------|
| TA12-5   | 2                           | 3                         | 5              | 12  | 3              | М3  | 11             | 15             | 11             | 0.0014           |
| TA17-7   | 6                           | 8.5                       | 7              | 17  | 4              | M4  | 16             | 22             | 15             | 0.0040           |
| TA21-9   | 10                          | 14                        | 9              | 21  | 5              | M5  | 18             | 26             | 18             | 0.0068           |
| TA22-10  | 15                          | 21                        | 10             | 22  | 6              | M6  | 19             | 27             | 19             | 0.0084           |
| TA28-12  | 30                          | 42                        | 12             | 28  | 6              | M6  | 26             | 36             | 25             | 0.0164           |
| TA34-14  | 50                          | 70                        | 14             | 34  | 6              | M6  | 30             | 43             | 30             | 0.0242           |
| TA37-16  | 65                          | 91                        | 16             | 37  | 6              | M6  | 33             | 48             | 33             | 0.0306           |
| TA40-16  | 80                          | 112                       | 16             | 40  | 8              | M8  | 35             | 50             | 34             | 0.0398           |
| TA43-18  | 100                         | 140                       | 18             | 43  | 8              | M8  | 38             | 55             | 38             | 0.0512           |
| TA47-20  | 130                         | 182                       | 20             | 47  | 12             | M12 | 41             | 60             | 41             | 0.0800           |
| TA50-22  | 160                         | 224                       | 22             | 50  | 12             | M12 | 45             | 64             | 44             | 0.0846           |
| TA54-22  | 190                         | 266                       | 22             | 54  | 12             | M12 | 47             | 68             | 47             | 0.0966           |
| TA57-24  | 230                         | 322                       | 24             | 57  | 12             | M12 | 51             | 73             | 50             | 0.1160           |
| TA62-25  | 280                         | 392                       | 25             | 62  | 12             | M12 | 54             | 78             | 53             | 0.1318           |
| TA65-27  | 350                         | 490                       | 27             | 65  | 12             | M12 | 58             | 82             | 57             | 0.1532           |
| TA70-29  | 400                         | 560                       | 29             | 70  | 12             | M12 | 61             | 86             | 60             | 0.1744           |
| TA72-31  | 500                         | 700                       | 31             | 72  | 16             | M16 | 65             | 91             | 63             | 0.2568           |
| TA80-32  | 600                         | 840                       | 32             | 80  | 16             | M16 | 69             | 100            | 69             | 0.3116           |
| TA82-35  | 700                         | 980                       | 35             | 82  | 16             | M16 | 74             | 105            | 72             | 0.3506           |
| TA85-36  | 800                         | 1 120                     | 36             | 85  | 16             | M16 | 76             | 110            | 75             | 0.3914           |
| TA90-38  | 900                         | 1 260                     | 38             | 90  | 16             | M16 | 80             | 114            | 78             | 0.4138           |
| TA98-40  | 1 200                       | 1 680                     | 40             | 98  | 16             | M16 | 86             | 123            | 85             | 0.5130           |
| TA116-48 | 2 000                       | 2 800                     | 48             | 116 | 16             | M16 | 101            | 146            | 98             | 0.8030           |

<sup>&</sup>lt;sup>1</sup> Max. energy capacity per cycle for continous use.


#### **Characteristics of Type TA37-16**





### Force-Stroke Characteristic (dynamic)

(with impact velocity over 0.5 m/s)



With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With the impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 8.8 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

Dynamic (v > 0.5 m/s) and static ( $v \le 0.5$  m/s) characteristics of all types are available on request.

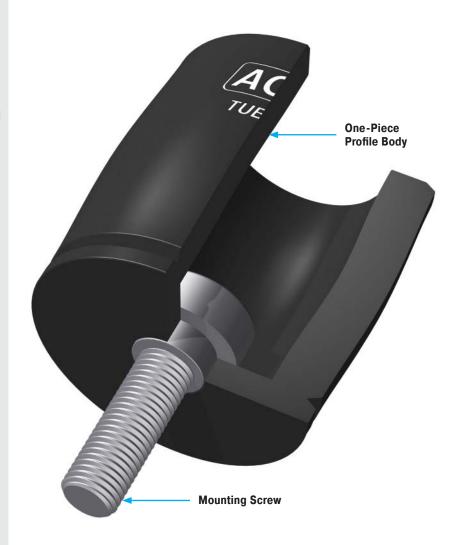
Issue 4.2009 Specifications subject to change

 $<sup>^{\</sup>rm 2}$  Energy capacity per cycle for emergency use.

## TUBUS-Series Type TS Profile Damper Axial Soft Damping

The **profile damper type TS** from the innovative ACE TUBUS series is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer.

As a result of the almost linear damping charcteristic it provides a very smooth energy absorption with minimum reaction loads on the machine. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to 90 °C.


The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100% of the incoming energy.

The space saving package size ranges from Ø 14 mm up to Ø 107 mm and is very simply and quickly installed with the supplied specially stepped mounting screw.

The TS series have been specially developed to provide **maximum energy capacity** in the minimum mounting space in the capacity range from 2 Nm up to 910 Nm.

Life expectancy is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.



Impact velocity range: Up to max. 5 m/s

**Environment:** Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

**Capacity rating:** For emergency use only (1 cycle) it is possible to exceed the  $W_3$  rating by +40 %.

Mounting: In any position

**Dynamic force range:** 670 N to 24 000 N **Operating temperature range:** -40 °C to 90 °C

**Energy absorption:** 

26 % to 56 %

Material hardness rating:

Shore 40D

Max. torque:

M4: 4 Nm M5: 6 Nm M6: 10 Nm M12: 85 Nm

M12: 85 Nm M16: 210 Nm

**On request:** Special strokes, -characteristics, -spring rates,

-sizes and -materials.



## **TUBUS-Series Type TS**

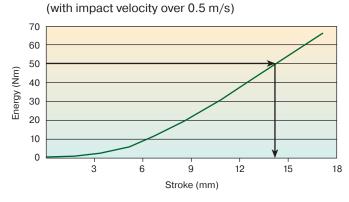
### Profile Damper Axial Soft Damping

# Ordering Example TUBUS axial soft Outer-Ø 44 mm Stroke 23 mm

d<sub>1</sub> D d<sub>2</sub>

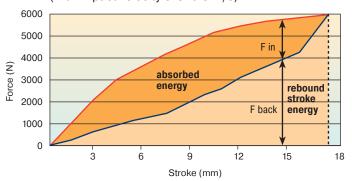
Max.
Stroke

The calculation and selection of the required profile damper should be carried out or be approved by ACE.


#### **Dimensions and Capacity Chart**

| Туре     | <sup>1</sup> W <sub>3</sub><br>Nm/Cycle | $^2~\mathrm{W_3}$ Nm/Cycle | Max. Stroke mm | D   | L <sub>1</sub> | М   | L <sub>2</sub> | d <sub>1</sub> | d <sub>2</sub> | Weight <b>kg</b> |
|----------|-----------------------------------------|----------------------------|----------------|-----|----------------|-----|----------------|----------------|----------------|------------------|
| TS14-7   | 2                                       | 3                          | 7              | 14  | 4              | M4  | 15             | 19             | 13             | 0.0030           |
| TS18-9   | 4                                       | 5.5                        | 9              | 18  | 5              | M5  | 18             | 24             | 16             | 0.0056           |
| TS20-10  | 6                                       | 8.5                        | 10             | 20  | 6              | M6  | 21             | 27             | 19             | 0.0076           |
| TS26-15  | 15                                      | 21                         | 15             | 26  | 6              | M6  | 28             | 37             | 25             | 0.0150           |
| TS32-16  | 25                                      | 35                         | 16             | 32  | 6              | M6  | 32             | 44             | 30             | 0.0212           |
| TS35-19  | 30                                      | 42                         | 19             | 35  | 6              | M6  | 36             | 48             | 33             | 0.0284           |
| TS40-19  | 35                                      | 49                         | 19             | 40  | 6              | M6  | 38             | 51             | 34             | 0.0314           |
| TS41-21  | 45                                      | 63                         | 21             | 41  | 12             | M12 | 41             | 55             | 38             | 0.0506           |
| TS44-23  | 65                                      | 91                         | 23             | 44  | 12             | M12 | 45             | 60             | 40             | 0.0718           |
| TS48-25  | 80                                      | 112                        | 25             | 48  | 12             | M12 | 49             | 64             | 44             | 0.0858           |
| TS51-27  | 90                                      | 126                        | 27             | 51  | 12             | M12 | 52             | 69             | 47             | 0.1016           |
| TS54-29  | 115                                     | 161                        | 29             | 54  | 12             | M12 | 55             | 73             | 50             | 0.1164           |
| TS58-30  | 135                                     | 189                        | 30             | 58  | 12             | M12 | 59             | 78             | 53             | 0.1324           |
| TS61-32  | 160                                     | 224                        | 32             | 61  | 16             | M16 | 62             | 83             | 56             | 0.2034           |
| TS64-34  | 195                                     | 273                        | 34             | 64  | 16             | M16 | 66             | 87             | 60             | 0.2326           |
| TS68-36  | 230                                     | 322                        | 36             | 68  | 16             | M16 | 69             | 92             | 63             | 0.2480           |
| TS75-39  | 285                                     | 399                        | 39             | 75  | 16             | M16 | 75             | 101            | 69             | 0.3012           |
| TS78-40  | 340                                     | 476                        | 40             | 78  | 16             | M16 | 79             | 105            | 72             | 0.3392           |
| TS82-44  | 395                                     | 553                        | 44             | 82  | 16             | M16 | 84             | 110            | 75             | 0.3460           |
| TS84-43  | 460                                     | 644                        | 43             | 84  | 16             | M16 | 85             | 115            | 78             | 0.4020           |
| TS90-47  | 565                                     | 791                        | 47             | 90  | 16             | M16 | 92             | 124            | 84             | 0.4902           |
| TS107-56 | 910                                     | 1 274                      | 56             | 107 | 16             | M16 | 110            | 147            | 100            | 0.7330           |

<sup>&</sup>lt;sup>1</sup> Max. energy capacity per cycle for continous use.


#### **Characteristics of Type TS44-23**

## Energy-Stroke Characteristic (dynamic)



#### Force-Stroke Characteristic (dynamic)

(with impact velocity over 0.5 m/s)



With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 14 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

<sup>&</sup>lt;sup>2</sup> Energy capacity per cycle for emergency use.

## TUBUS-Series Type TR Profile Damper Radial Damping

The **profile damper type TR** from the innovative ACE TUBUS series is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer.

The radial deformation of the TR series provides a very long and soft deceleration with a progressive energy absorption towards the end of stroke. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to 90 °C.

The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100% of the incoming energy.

The space saving package size ranges from Ø 29 mm up to Ø 100 mm and is very simply and quickly installed with the supplied special stepped mounting screw. The TR series have been specially developed to provide maximum stroke in the minimum mounting space in the capacity range from 2 Nm up to 115 Nm.

**Life expectancy** is extremely high; **up to twenty times** longer than for urethane dampers, up to **ten times** longer than rubber bumpers and up to **five times** longer than steel springs.

Calculation and selection to be approved by ACE.



Impact velocity range: Up to max. 5 m/s

**Environment:** Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

**Capacity rating:** For emergency use only (1 cycle) it is possible to exceed the  $W_3$  rating by +40 %.

Mounting: In any position

Dynamic force range: 300 N to 6 200 N

Operating temperature range: -40 °C to 90 °C
Energy absorption:

17 % to 35 %

Material hardness rating:

Shore 40D

Max. torque: M5: 6 Nm

M6: 10 Nm M8: 25 Nm

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

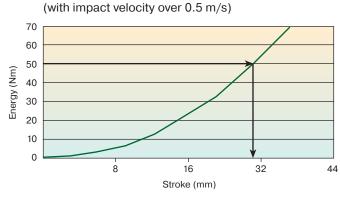




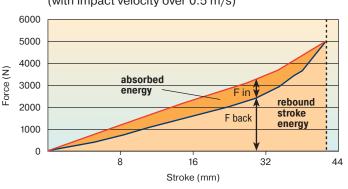
#### **Ordering Example** TR93-57 TUBUS radial . Outer-Ø 93 mm \_ Stroke 57 mm \_

C Stroke Width B

The calculation and selection of the required profile damper should be carried out or be approved by ACE.


#### **Dimensions and Capacity Chart**

| Туре     | <sup>1</sup> W3<br>Nm/Cycle | $^2\mathrm{W}_3$ Nm/Cycle | Max. Stroke mm | А   | L <sub>1</sub> | М  | L <sub>2</sub> | В  | С   | Weight<br><b>kg</b> |
|----------|-----------------------------|---------------------------|----------------|-----|----------------|----|----------------|----|-----|---------------------|
| TR29-17  | 2                           | 3                         | 17             | 29  | 5              | M5 | 25             | 13 | 38  | 0.0062              |
| TR37-22  | 3                           | 4.5                       | 22             | 37  | 5              | M5 | 32             | 19 | 50  | 0.0128              |
| TR43-25  | 4                           | 5.5                       | 25             | 43  | 5              | M5 | 37             | 20 | 58  | 0.0172              |
| TR50-35  | 6                           | 8.5                       | 35             | 50  | 5              | M5 | 44             | 34 | 68  | 0.0222              |
| TR63-43  | 15                          | 21                        | 43             | 63  | 5              | M5 | 55             | 43 | 87  | 0.0508              |
| TR67-40  | 25                          | 35                        | 40             | 67  | 5              | M5 | 59             | 46 | 88  | 0.0770              |
| TR76-46  | 40                          | 56                        | 46             | 76  | 6              | M6 | 67             | 46 | 102 | 0.1042              |
| TR83-50  | 45                          | 63                        | 50             | 83  | 6              | M6 | 73             | 51 | 109 | 0.1416              |
| TR85-50  | 70                          | 98                        | 50             | 85  | 8              | M8 | 73             | 69 | 111 | 0.2062              |
| TR93-57  | 90                          | 126                       | 57             | 93  | 8              | M8 | 83             | 83 | 124 | 0.2970              |
| TR100-60 | 115                         | 161                       | 60             | 100 | 8              | M8 | 88             | 82 | 133 | 0.3346              |


<sup>&</sup>lt;sup>1</sup> Max. energy capacity per cycle for continous use.

#### **Characteristics of Type TR93-57**

## **Energy-Stroke Characteristic (dynamic)**



#### Force-Stroke Characteristic (dynamic) (with impact velocity over 0.5 m/s)



With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 31 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

<sup>&</sup>lt;sup>2</sup> Energy capacity per cycle for emergency use.

Profile Damper Radial Damping (Hard Version)

Like the standard model TR, the new profile damper type TR-H is used for radial damping and therefore provides a very long and soft deceleration. The profile dampers from the innovative ACE TUBUS series are maintenance-free, self-contained damping elements made from a special Co-Polyester Elastomer. With nearly the same dimensions the TUBUS TR-H type provides a much higher energy absorption due to a harder mixture of materials. The new TR-H type completes the TUBUS series between the progressive model type TR and the almost linear type TS. This offers an individual and widely graduated range of damping characteristics within the whole TUBUS series. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to 90 °C. The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100% of the incoming energy.

The space saving package size ranges from Ø 30 mm up to Ø 102 mm and is very simply and quickly installed with the supplied special stepped mounting screw. The TR-H series have been specially developed to provide maximum stroke in the minimum mounting space in the capacity range from 2.3 Nm up to 228.5 Nm.

Life expectancy is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.



Impact velocity range: Up to max. 5 m/s

**Environment:** Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

**Capacity rating:** For emergency use only (1 cycle) it is possible to exceed the  $W_3$  rating by +40 %.

Mounting: In any position

Dynamic force range: 600 N to 14 400 N

Operating temperature range: -40 °C to 90 °C Energy absorption:

Energy absorption 39 % to 50 %

Material hardness rating:

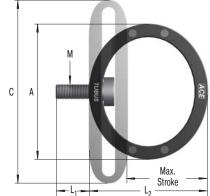
Shore 55D

Mounting screw torque:

M5: 6 Nm M6: 10 Nm M8: 25 Nm

**On request:** Special strokes, -characteristics, -spring rates,

-sizes and -materials.



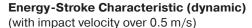


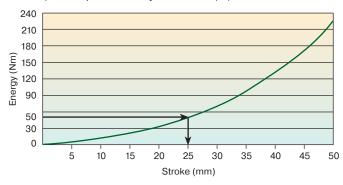

## TUBUS-Series Type TR-H

Profile Damper Radial Damping (Hard Version)

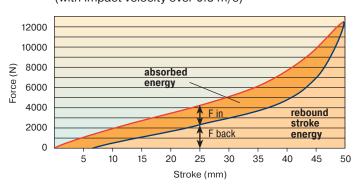
#### **Ordering Example** TR95-50H TUBUS radial hard \_ Outer-Ø 95 mm \_ Stroke 50 mm \_




The calculation and selection of the required profile damper should be carried out or be approved by ACE.


#### **Dimensions and Capacity Chart**

| Туре      | <sup>1</sup> W <sub>3</sub><br>Nm/Cycle | $^2\mathrm{W}_3$ Nm/Cycle | Max. Stroke mm | Α   | L <sub>1</sub> | М  | L <sub>2</sub> | В  | С   | Weight <b>kg</b> |
|-----------|-----------------------------------------|---------------------------|----------------|-----|----------------|----|----------------|----|-----|------------------|
| TR30-15H  | 2.5                                     | 3.5                       | 15             | 30  | 5              | M5 | 23             | 13 | 38  | 0.004            |
| TR39-19H  | 6                                       | 8.5                       | 19             | 30  | 5              | M5 | 30             | 19 | 50  | 0.011            |
| TR45-23H  | 8.5                                     | 12                        | 23             | 45  | 5              | M5 | 36             | 20 | 58  | 0.016            |
| TR52-32H  | 11.5                                    | 16                        | 32             | 52  | 5              | M5 | 42             | 34 | 68  | 0.025            |
| TR64-41H  | 22.5                                    | 31.5                      | 41             | 64  | 5              | M5 | 53             | 43 | 87  | 0.051            |
| TR68-37H  | 62                                      | 87                        | 37             | 68  | 5              | M5 | 56             | 46 | 88  | 0.080            |
| TR79-42H  | 79                                      | 110.5                     | 42             | 79  | 6              | M6 | 64             | 46 | 102 | 0.105            |
| TR86-45H  | 124                                     | 173.5                     | 45             | 87  | 6              | M6 | 69             | 51 | 109 | 0.146            |
| TR87-46H  | 158                                     | 221                       | 46             | 87  | 8              | M6 | 68             | 69 | 111 | 0.190            |
| TR95-50H  | 226                                     | 316.5                     | 50             | 95  | 8              | M8 | 77             | 83 | 124 | 0.266            |
| TR102-56H | 282.5                                   | 395.5                     | 56             | 102 | 8              | M8 | 84             | 82 | 133 | 0.319            |


<sup>&</sup>lt;sup>1</sup> Max. energy capacity per cycle for continous use.

#### **Characteristics of Type TR95-50H**





#### Force-Stroke Characteristic (dynamic) (with impact velocity over 0.5 m/s)



With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 25 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

<sup>&</sup>lt;sup>2</sup> Energy capacity per cycle for emergency use.

## TUBUS-Series Type TR-L

### Profile Damper Radial Damping (Long Version)

### The radial tube damper type TR-L from the innovative ACE TUBUS series

is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer.

The radial deformation of the TR series provides a very long and soft deceleration with a progressive energy absorption towards the end of stroke. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to

The tube damper has been specially developed for applications that require very low reaction forces. The actual force generated depends upon the length of the tube damper chosen.

The TUBUS TR-L type is suitable for a wide range of applications that require protection from shock or impact anywhere along a straight line. Typical applications include mining equipment, dockyard handling equipment and on baggage handling and conveyor sys-

The TR-L series have been developed to provide maximum stroke in the minimum mounting space.

**Life expectancy** is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.



Impact velocity range: Up to max. 5 m/s

**Environment:** Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the  $W_3$  rating by +40 %.

Mounting: In any position Dynamic force range: 6800 N to 286000 N

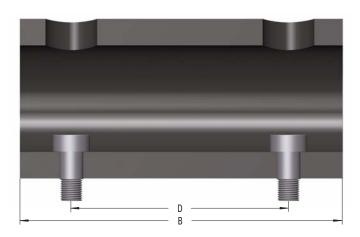
**Operating temperature** range: -40 °C to 90 °C **Energy absorption:** 

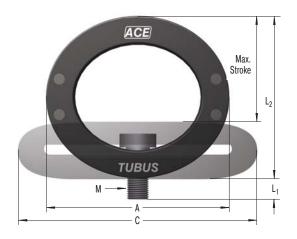
14 % to 26 %

Material hardness rating:

Shore 40D Max. torque:

M5: 6 Nm M8: 25 Nm M16: 210 Nm


On request: Special strokes, -colours, -sizes and -materials.






## TUBUS-Series Type TR-L

## Profile Damper Radial Damping (Long Version)





#### **Ordering Example** TR66-40L-2 TUBUS radial long \_\_\_\_ Outer-Ø 66 mm \_\_\_\_ Stroke 40 mm \_\_ Length 2 = 305 mm \_

The calculation and selection of the required profile damper should be carried out or be approved by ACE.

#### **Dimensions and Capacity Chart**

| Туре         | <sup>1</sup> W <sub>3</sub><br>Nm/Cycle | $^2~{ m W}_3$ Nm/Cycle | Max. Stroke<br>mm | Α   | В     | С   | D     | М   | L <sub>1</sub> | $L_2$ | Weight<br><b>kg</b> |
|--------------|-----------------------------------------|------------------------|-------------------|-----|-------|-----|-------|-----|----------------|-------|---------------------|
|              | MIII/ Cycle                             | Mili/Cycle             |                   |     |       |     |       |     |                |       | ĸy                  |
| TR29-17L     | 12                                      | 17                     | 17                | 29  | 80    | 38  | 40    | M5  | 5              | 25    | 0.029               |
| TR43-25L     | 16                                      | 22.5                   | 25                | 43  | 80    | 58  | 40    | M5  | 5              | 37    | 0.072               |
| TR63-43L     | 30                                      | 42                     | 43                | 63  | 80    | 87  | 40    | M5  | 5              | 55    | 0.106               |
| TR66-40L-1   | 100                                     | 140                    | 40                | 66  | 152   | 87  | 102   | M8  | 8              | 59    | 0.280               |
| TR66-40L-2   | 200                                     | 280                    | 40                | 66  | 305   | 87  | 254   | M8  | 8              | 59    | 0.580               |
| TR66-40L-3   | 300                                     | 420                    | 40                | 66  | 457   | 87  | 406   | M8  | 8              | 59    | 0.830               |
| TR66-40L-4   | 400                                     | 560                    | 40                | 66  | 610   | 87  | 559   | M8  | 8              | 59    | 1.300               |
| TR66-40L-5   | 500                                     | 700                    | 40                | 66  | 762   | 87  | 711   | M8  | 8              | 59    | 1.330               |
| TR76-45L-1   | 135                                     | 190                    | 45                | 76  | 152   | 100 | 102   | M8  | 8              | 68    | 0.380               |
| TR76-45L-2   | 270                                     | 378                    | 45                | 76  | 305   | 100 | 254   | M8  | 8              | 68    | 0.730               |
| TR76-45L-3   | 400                                     | 560                    | 45                | 76  | 457   | 100 | 406   | M8  | 8              | 68    | 1.130               |
| TR76-45L-4   | 535                                     | 750                    | 45                | 76  | 610   | 100 | 559   | M8  | 8              | 68    | 1.430               |
| TR76-45L-5   | 670                                     | 940                    | 45                | 76  | 762   | 100 | 711   | M8  | 8              | 68    | 1.730               |
| TR83-48L-1   | 155                                     | 217                    | 48                | 83  | 152   | 106 | 102   | M8  | 8              | 73    | 0.480               |
| TR83-48L-2   | 315                                     | 440                    | 48                | 83  | 305   | 106 | 254   | M8  | 8              | 73    | 0.930               |
| TR83-48L-3   | 470                                     | 660                    | 48                | 83  | 457   | 106 | 406   | M8  | 8              | 73    | 1.380               |
| TR83-48L-4   | 625                                     | 875                    | 48                | 83  | 610   | 106 | 559   | M8  | 8              | 73    | 4.830               |
| TR83-48L-5   | 780                                     | 1 092                  | 48                | 83  | 762   | 106 | 711   | M8  | 8              | 73    | 6.000               |
| TR99-60L-1   | 205                                     | 287                    | 60                | 99  | 152   | 130 | 102   | M16 | 16             | 88    | 0.790               |
| TR99-60L-2   | 410                                     | 574                    | 60                | 99  | 305   | 130 | 254   | M16 | 16             | 88    | 1.290               |
| TR99-60L-3   | 615                                     | 861                    | 60                | 99  | 457   | 130 | 406   | M16 | 16             | 88    | 1.940               |
| TR99-60L-4   | 820                                     | 1 148                  | 60                | 99  | 610   | 130 | 559   | M16 | 16             | 88    | 2.540               |
| TR99-60L-5   | 1 025                                   | 1 435                  | 60                | 99  | 762   | 130 | 711   | M16 | 16             | 88    | 3.100               |
| TR99-60L-6   | 1 230                                   | 1 722                  | 60                | 99  | 914   | 130 | 864   | M16 | 16             | 88    | 3.700               |
| TR99-60L-7   | 1 435                                   | 2 010                  | 60                | 99  | 1 067 | 130 | 1 016 | M16 | 16             | 88    | 4.300               |
| TR143-86L-1  | 575                                     | 805                    | 86                | 143 | 152   | 191 | 76    | M16 | 16             | 127   | 1.440               |
| TR143-86L-2  | 1 155                                   | 1 617                  | 86                | 143 | 305   | 191 | 203   | M16 | 16             | 127   | 2.900               |
| TR143-86L-3  | 1 730                                   | 2 422                  | 86                | 143 | 457   | 191 | 355   | M16 | 16             | 127   | 4.000               |
| TR143-86L-4  | 2 305                                   | 3 227                  | 86                | 143 | 610   | 191 | 508   | M16 | 16             | 127   | 5.290               |
| TR143-86L-5  | 2 880                                   | 4 032                  | 86                | 143 | 762   | 191 | 660   | M16 | 16             | 127   | 6.590               |
| TR143-86L-6  | 3 455                                   | 4 837                  | 86                | 143 | 914   | 191 | 812   | M16 | 16             | 127   | 7.890               |
| TR143-86L-7  | 4 030                                   | 5 642                  | 86                | 143 | 1 067 | 191 | 965   | M16 | 16             | 127   | 9.900               |
| TR188-108L-1 | 1 350                                   | 1 890                  | 108               | 188 | 152   | 245 | 76    | M16 | 16             | 165   | 2.340               |
| TR188-108L-2 | 2 710                                   | 3 794                  | 108               | 188 | 305   | 245 | 203   | M16 | 16             | 165   | 4.640               |
| TR188-108L-3 | 4 060                                   | 5 684                  | 108               | 188 | 457   | 245 | 355   | M16 | 16             | 165   | 6.890               |
| TR188-108L-4 | 5 420                                   | 7 588                  | 108               | 188 | 610   | 245 | 508   | M16 | 16             | 165   | 9.190               |
| TR188-108L-5 | 6 770                                   | 9 478                  | 108               | 188 | 762   | 245 | 660   | M16 | 16             | 165   | 11.390              |
| TR188-108L-6 | 8 120                                   | 11 368                 | 108               | 188 | 914   | 245 | 812   | M16 | 16             | 165   | 13.640              |
| TR188-108L-7 | 9 480                                   | 13 272                 | 108               | 188 | 1 067 | 245 | 965   | M16 | 16             | 165   | 15.940              |

 $<sup>^{\</sup>mbox{\scriptsize 1}}$  Max. energy capacity per cycle for continous use.

<sup>&</sup>lt;sup>2</sup> Energy capacity per cycle for emergency use.

## TUBUS-Series Type TC Profile Damper for Crane Equipment

The **profile damper type TC** from the innovative ACE TUBUS series is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer. They have been specially developed for crane equipment applications and fulfill the international industry standards OSHA and CMAA.

Many crane applications require a spring rate with a high return force. This is achieved with the unique **Dual-Profile Concept** of the TC-S models.

For energy-management-systems the TC model types provide a cost efficient solution with a high return force capability. The very small and light package size from Ø 64 mm up to Ø 176 mm covers an energy absorption capacity ranging from 450 Nm up to 12 720 Nm/cycle. The excellent resistance to UV, seawater, chemical and microbe attack together with the wide operating temperature range from -40 °C to 90 °C enables a wide range of applications.

**Life expectancy** is extremely high; **up to twenty times** longer than for urethane dampers, up to **ten times** longer than rubber bumpers and up to **five times** longer than steel springs.

Calculation and selection to be approved by ACE.



Impact velocity range: Up to max.  $5\,\text{m/s}$ 

**Environment:** Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is

possible to exceed the  $W_3$  rating by +40 %. **Mounting:** In any position

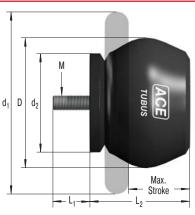
**Dynamic force range:** 80 000 N to 978 000 N **Operating temperature** 

range: -40 °C to 90 °C Energy absorption: 31 % to

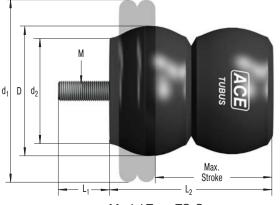
63 %

Material hardness rating:

Shore 55D


**Max. torque:** M12: 85 Nm M16: 210 Nm

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.




## **TUBUS-Series Type TC**

#### Profile Damper for Crane Equipment



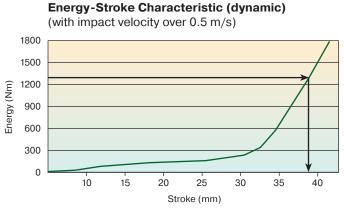
Model Type TC



Model Type TC-S

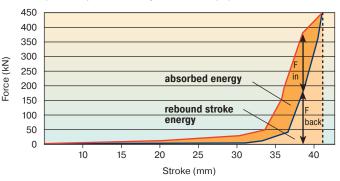
| Ordering Example   | TC83-73-S |
|--------------------|-----------|
| TUBUS crane buffer |           |
| Outer-Ø 83 mm      |           |
| Stroke 73 mm       |           |
| Model type soft    |           |

The calculation and selection of the required profile damper should be carried out or be approved by ACE.


#### **Dimensions and Capacity Chart**

| Туре        | <sup>1</sup> W <sub>3</sub><br>Nm/Cycle | $^2\mathrm{W}_3$ Nm/Cycle | Max. Stroke mm | D   | L <sub>1</sub> | М   | L <sub>2</sub> | d <sub>1</sub> | $d_2$ | Weight <b>kg</b> |
|-------------|-----------------------------------------|---------------------------|----------------|-----|----------------|-----|----------------|----------------|-------|------------------|
| TC64-62-S   | 450                                     | 630                       | 62             | 64  | 12             | M12 | 79             | 89             | 52    | 0.175            |
| TC74-76-S   | 980                                     | 1 372                     | 76             | 74  | 12             | M12 | 96             | 114            | 61    | 0.261            |
| TC83-73-S   | 1 900                                   | 2 660                     | 73             | 83  | 12             | M12 | 94             | 127            | 69    | 0.328            |
| TC86-39     | 1 210                                   | 1 695                     | 39             | 86  | 12             | M12 | 56             | 133            | 78    | 0.284            |
| TC90-49     | 1 630                                   | 2 282                     | 49             | 90  | 12             | M12 | 68             | 124            | 67    | 0.265            |
| TC100-59    | 1 770                                   | 2 480                     | 59             | 100 | 12             | M12 | 84             | 149            | 91    | 0.513            |
| TC102-63    | 1 970                                   | 2 760                     | 63             | 102 | 16             | M16 | 98             | 140            | 82    | 0.633            |
| TC108-30    | 1 900                                   | 2 660                     | 30             | 108 | 12             | M12 | 53             | 133            | 77    | 0.392            |
| TC117-97    | 3 710                                   | 5 195                     | 97             | 117 | 16             | M16 | 129            | 188            | 100   | 1.053            |
| TC134-146-S | 7 290                                   | 10 210                    | 146            | 134 | 16             | M16 | 188            | 215            | 117   | 1.573            |
| TC136-65    | 4 250                                   | 5 950                     | 65             | 136 | 16             | M16 | 106            | 178            | 106   | 1.173            |
| TC137-90    | 6 350                                   | 8 890                     | 90             | 137 | 16             | M16 | 115            | 216            | 113   | 1.193            |
| TC146-67-S  | 8 330                                   | 11 660                    | 67             | 146 | 16             | M16 | 118            | 191            | 99    | 1.573            |
| TC150-178-S | 8 860                                   | 12 400                    | 178            | 150 | 16             | M16 | 241            | 224            | 132   | 2.581            |
| TC153-178-S | 7 260                                   | 10 165                    | 178            | 153 | 16             | M16 | 226            | 241            | 131   | 2.493            |
| TC168-124   | 10 100                                  | 14 140                    | 124            | 168 | 16             | M16 | 166            | 260            | 147   | 2.533            |
| TC176-198-S | 12 720                                  | 17 810                    | 198            | 176 | 16             | M16 | 252            | 279            | 150   | 3.591            |

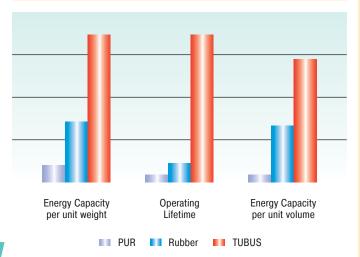
<sup>&</sup>lt;sup>1</sup> Max. energy capacity per cycle for continous use.


ssue 4.2009 Specifications subject to change

#### **Characteristics of Type TC90-49**



#### Force-Stroke Characteristic (dynamic)


(with impact velocity over 0.5 m/s)



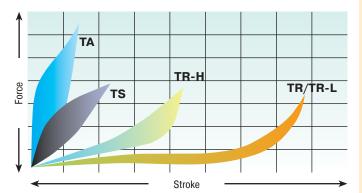
With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 1300 Nm the Energy-Stroke diagram shows that a stroke of about 38 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Note: With these types the return force towards the end of the stroke is significant and we recommend you try to use a minimum of 90 % of the total stroke available.

<sup>&</sup>lt;sup>2</sup> Energy capacity per cycle for emergency use.

#### **Physical Properties of TUBUS Profile Dampers**



**ACE TUBUS profile dampers** are high performance damping elements made from a special Co-Polyester Elastomer. They have a high energy absorbing capacity compared with other materials.


The TUBUS-series comprises 5 main types with over 80 individual models.

The excellent damping characteristics are achieved as a result of the special elastomer material and the worldwide patented construction design. This enables us to change the characteristics of the elastomer material so that individual and distinct damping curves are possible.

TUBUS dampers offer a considerable performance advantage when compared to other materials such as rubber, urethanes (PUR) and steel springs.

A further advantage compared to other damping elements is the operating life expectancy - up to twenty times longer than with urethane dampers, up to ten times longer than with rubber dampers and up to five times longer than with steel spring dampers.

#### **Comparison of Damping Characteristics**



Characteristics of dynamic energy absorption for impact velocity over 0.5 m/s. For impact velocities under 0.5 m/s, please request a static characteristic curve.

The innovative TUBUS dampers absorb energy while exhibiting the following damping characteristics:

**Model type TA:** Degressive characteristic with max. energy absorption (coloured area) with min. stroke. Energy absorption: 40 % to 66 %.

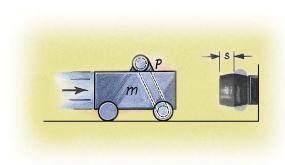
Model type TS: Almost linear characteristic with low reaction force over a short operating stroke. Energy absorption: 26 % to 56 %.

TR/TR-H/TR-L: Progressive characteristic with gradually increasing reaction force over a long stroke.

17 % to 35 % Energy absorption **TR**: Energy absorption TR-H: 39 % to 50 % Energy absorption TR-L: 14 % to 26 %

The material does not absorb water or swell and it is highly resistant to abrasion. Products of the TUBUS-series will work at temperatures of -40 °C up to 90 °C and are resistant to grease, oil, petroleum fluids, microbe and chemical attack and sea water. They also have good UV and ozone resistance. The very long service life of up to one million cycles, the compact size and the low unit weight differentiate the TUBUS profile dampers from all other types of elastomer damping elements.

If you are looking for an economic damping solution where the load does not need to be decelerated to an exact datum position and you do not need 100% absorption of the impact energy then TUBUS dampers are a real alternative to hydraulic end position damping. They are the preferred solution for end stop dampers in robotic systems, high bay warehouse systems and all similar automated plant and machinery.


For the crane industry we manufacture special high **capacity crane buffers** that have an ideal deceleration characteristic with high return force for this type of application and energy capacities from 450 to 12 720 Nm. This means you can have a TUBUS crane buffer capable of providing up to 900 kN of braking force in a package only weighing 3 kg and absorbing up to 50 % of the energy.

#### **Special Damper**

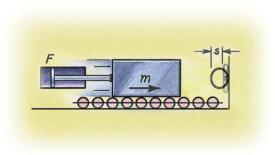
Besides the standard product range of the TUBUS-series there are also a large number of special products available upon request for customer-specific applications.

88





#### Safe end position damping


**ACE TUBUS profile dampers** protect the integrated loading station on a new high speed machining centre.

The ACE TUBUS damper is designed to prevent overrun on the high speed loading station of a Camshaft machining centre used in the automobile industry. In the event that the drive train fails during operation or incorrect data is inputted the ACE TUBUS damper absorbs the impact preventing costly damage to the machine. The TA98-40 TUBUS damper impressed engineers with this exceptionally long service life in operation.

When used as an emergency stop the TUBUS damper can absorb up to 63% of the impact energy.



Safety with ultra high speed operation



**Smooth pivoting** 

#### **TUBUS** profile dampers safeguard hydraulic cylinders.

In a testing facility for vehicle tanks, the test specimens are pulled out of the water with a support arm. A hydraulic cylinder carries out the swinging movement and is attenuated in the end position by two TUBUS TR85-50.

Even if this work could be taken over by other absorber solutions, the energy balance clearly speaks for the benefits of the profile dampers - they are inexpensive, they save space, they are free of leaks due to solid construction and are suitable for underwater functions in the test pool.



Economical end position absorption on the hydraulic drive