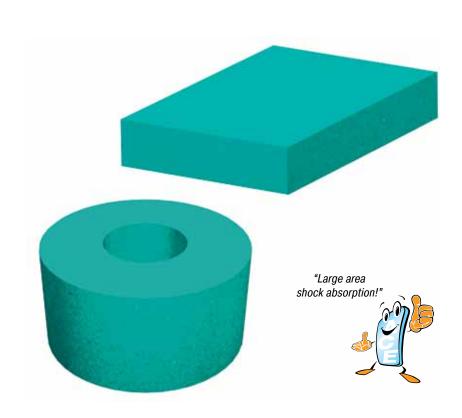


SLAB Plates for Shock Absorption and Vibration Damping

Designed to Absorb Shock Loads and Insulate Vibrations for...

Machine Tools, Textile Machinery, Crane Rails, Hydraulic Crushers, Presses/Stamping Machines, Air-Conditioning & Ventilating Machines and More



SLAB SL-030 to SL-300

Damping Plates for Shock Absorption

SLAB damping plates of the **SL-030**, **SL-100 and SL-300 series** are visco-elastic PUR materials that are manufactured according to a patented formula and which were especially designed to absorb shock loads. At the same time, the resulting structure-borne noise is effectively reduced. This material is characterized by its very high inner damping. The rebound elasticity is around < 30 % (Tolerance +/-10%). The result makes this product an alternative to hydraulic end-of-travel damping, if the load doesn't need to be stopped accurately and the energy doesn't have to be reduced by 100%.

The densities of SL-030 = 270 kg/m³, SL-100 = 500 kg/m³ and SL-300 = 800 kg/m³ cover a wide spectrum of the energy absorption to the applied area. This enables a relatively independent choice of applied area.

Impact velocity range: max.5 m/s

Compression set: \leq 5%, at 50% of compression, 23 °C, 70 h, 30 min after unloading, according to EN ISO 1856

Environment: Resistant against ozone and UV radiation (also see chemical resistancy page 18)

Material: Mixed cellular PUR-Elastomer (polyether urethane), standard color green

Standard density: 270 kg/m³, 500 kg/m³ and 800 kg/m³

Impact resilience: < 30%, tolerance +/- 10%, SL-030 and SL-100 according to DIN 53573, SL-300 according to DIN 53512 (measurement following the respective standard).

Fire rating: B2, normally flammable according to DIN 4102

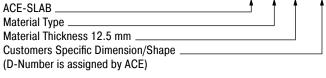
Operating temperature range: -30 °C to +50 °C, short-term higher temperature possible.

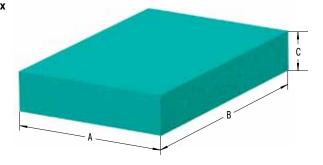
Delivery form: Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m wide, 5.0 m long. Strips: Up to the maximum width and length. Other dimensions (also thickness), colors, shapes and cut-out parts on request.

Possibilities for cutting: Water jet cutting, stamping, splitting, sawing, drilling etc.

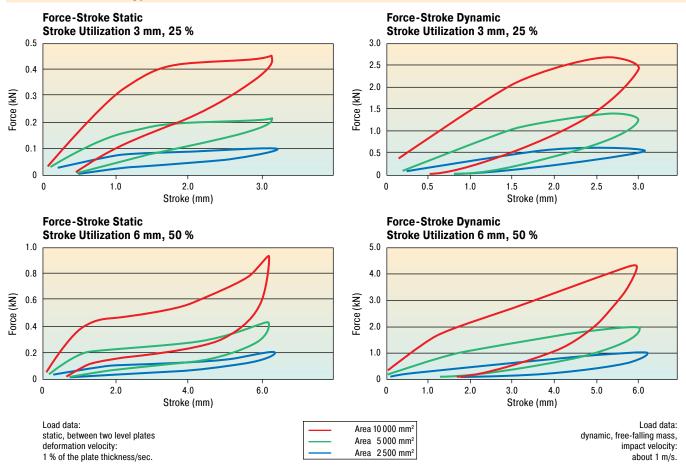
Mounting style: Bonding (see adhesive recommendation page 17), clamps, screws, etc.

On request: Available with compact polyurethane wearing surface, shore hardness: 82 shore Sh A.

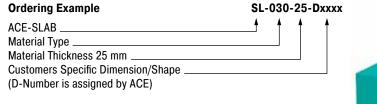


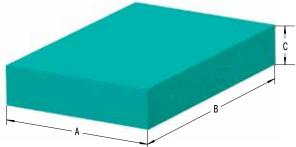


Ordering Example

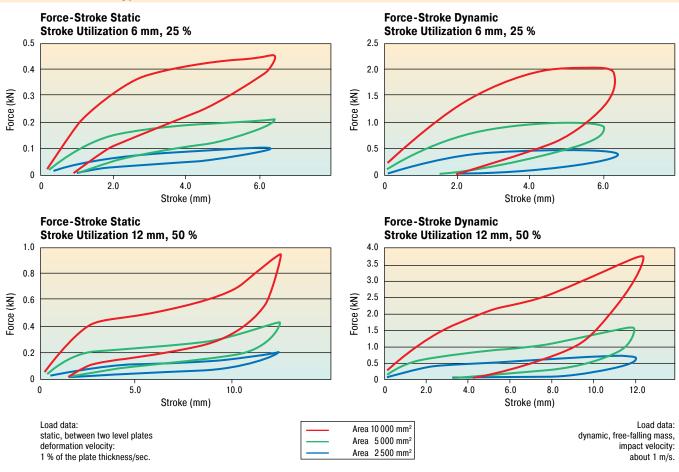

SL-030-12-Dxxxx

The chosen damping plate should be tested by the customer on the specific application.


Characteristics of Type SL-030-12



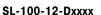
Dimensions and Capacity Chart (Sample Plates MP1 to MP3)									
Туре	¹ E ₃ max.	1 Stroke Utilization	Α	В	С	Area	Density	Return Time	Weight
	Nm/Cycle	mm				mm ²	kg/m³	S	kg
SL-030-12-D-MP1	2.3 (5.0)	3 (6)	50	50	12.5	2 500	270	Approx. 3 (4)	0.008
SL-030-12-D-MP2	4.3 (9.5)	3 (6)	70.7	70.7	12.5	5 000	270	Approx. 3 (4)	0.017
SL-030-12-D-MP3	9.5 (19.5)	3 (6)	100	100	12.5	10 000	270	Approx. 3 (4)	0.034

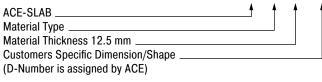


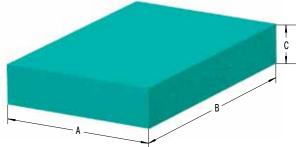
The chosen damping plate should be tested by the customer on the specific application.

Characteristics of Type SL-030-25

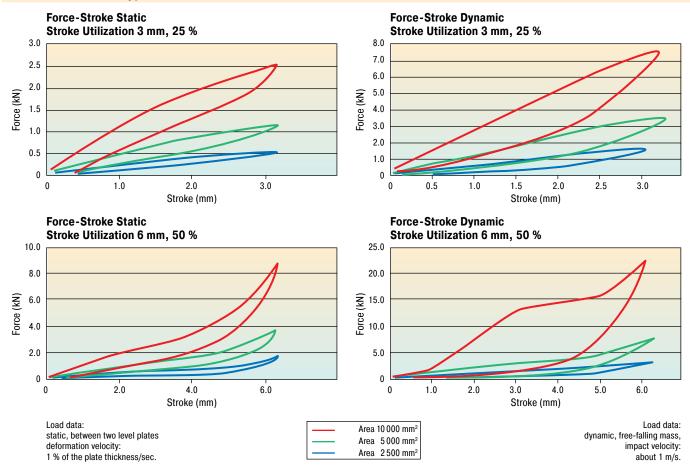
Dimensions and Capacity Chart (Sample Plates MP1 to MP3)									
Туре	¹ E ₃ max.	¹ Stroke Utilization	Α	В	С	Area	Density	Return Time	Weight
	Nm/Cycle	mm				mm ²	kg/m³	S	kg
SL-030-25-D-MP1	3.5 (6.0)	6 (12)	50	50	25	2 500	270	Approx. 4 (5)	0.017
SL-030-25-D-MP2	5.7 (11.5)	6 (12)	70.7	70.7	25	5 000	270	Approx. 4 (5)	0.034
SL-030-25-D-MP3	11.5 (21.5)	6 (12)	100	100	25	10 000	270	Approx. 4 (5)	0.068



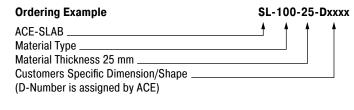


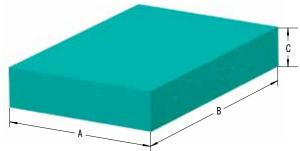

SLAB SL-100-12

Damping Plates for Shock Absorption

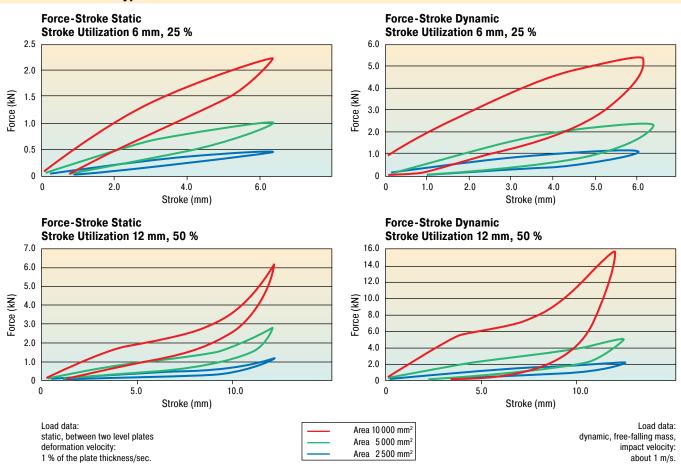


The chosen damping plate should be tested by the customer on the specific application.


Characteristics of Type SL-100-12



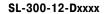
Dimensions and Capacity Chart (Sample Plates MP1 to MP3)									
Туре	¹ E ₃ max.	¹ Stroke Utilization	Α	В	С	Area	Density	Return Time	Weight
	Nm/Cycle	mm				mm ²	kg/m ³	S	kg
SL-100-12-D-MP1	4.5 (13.0)	3 (6)	50	50	12.5	2 500	500	Approx. 3 (4)	0.016
SL-100-12-D-MP2	11.5 (29.0)	3 (6)	70.7	70.7	12.5	5 000	500	Approx. 3 (4)	0.031
SL-100-12-D-MP3	23.0 (75.0)	3 (6)	100	100	12.5	10 000	500	Approx. 3 (4)	0.063

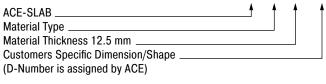


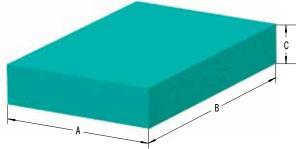
The chosen damping plate should be tested by the customer on the specific application.

Characteristics of Type SL-100-25

Dimensions and Capacity Chart (Sample Plates MP1 to MP3)									
Туре	¹ E ₃ max.	¹ Stroke Utilization	Α	В	С	Area	Density	Return Time	Weight
	Nm/Cycle	mm				mm ²	kg/m³	S	kg
SL-100-25-D-MP1	5.7 (14.5)	6 (12)	50	50	25	2 500	500	Approx. 4 (5)	0.031
SL-100-25-D-MP2	11.5 (33.0)	6 (12)	70.7	70.7	25	5 000	500	Approx. 4 (5)	0.062
SL-100-25-D-MP3	28.5 (90.0)	6 (12)	100	100	25	10 000	500	Approx. 4 (5)	0.125

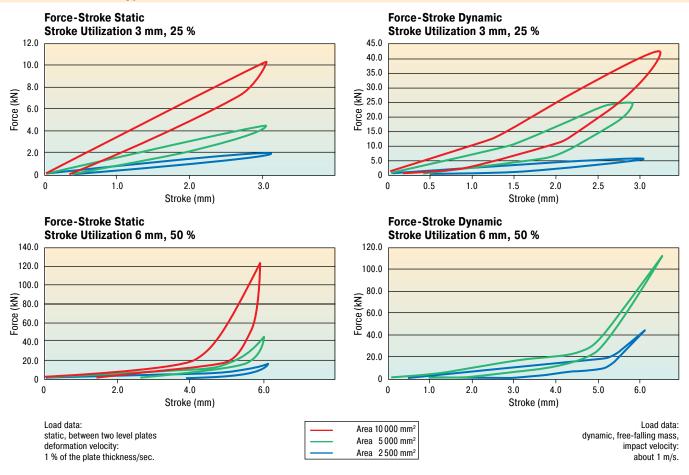




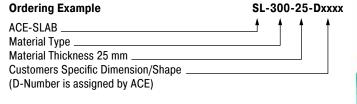

SLAB SL-300-12

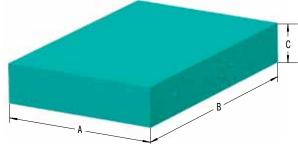
Damping Plates for Shock Absorption

Ordering Example

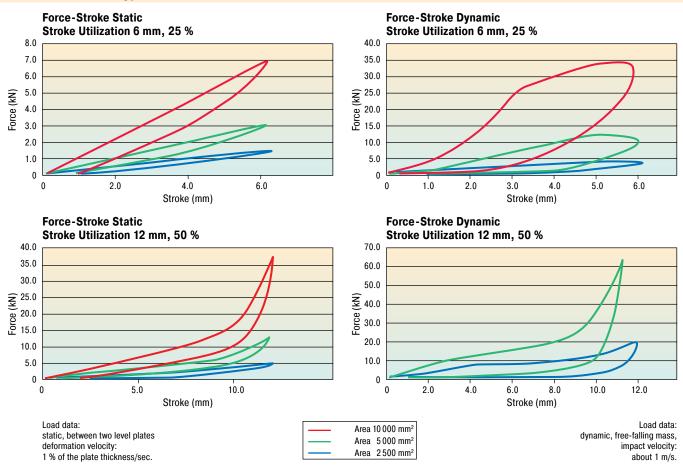


The chosen damping plate should be tested by the customer on the specific application.


Characteristics of Type SL-300-12

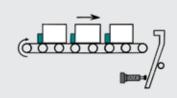


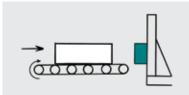
Dimensions and Capacity Chart (Sample Plates MP1 to MP3)									
Туре	¹ E ₃ max. Nm/Cycle	¹ Stroke Utilization mm	A	В	С	Area mm²	Density kg/m³	Return Time s	Weight kg
SL-300-12-D-MP1	17.0 (85.0)	3 (6)	50	50	12.5	2 500	800	Approx. 2 (3)	0.025
SL-300-12-D-MP2	50.0 (250.0)	3 (6)	70.7	70.7	12.5	5 000	800	Approx. 2 (3)	0.050
SL-300-12-D-MP3	100.0	3 (6)	100	100	12.5	10 000	800	Approx. 2 (3)	0.100



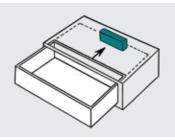
The chosen damping plate should be tested by the customer on the specific application.

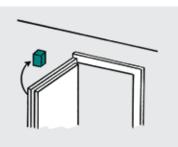
Characteristics of Type SL-300-25


Dimensions and Capacity Chart (Sample Plates MP1 to MP3)									
Туре	¹ E ₃ max. Nm/Cycle	¹ Stroke Utilization mm	Α	В	С	Area mm²	Density kg/m ³	Return Time	Weight kg
SL-300-25-D-MP1	19.5 (90.0)	6 (12)	50	50	25	2500	800	Approx. 3 (4)	0.050
SL-300-25-D-MP2	50.0 (225.0)	6 (12)	70.7	70.7	25	5000	800	Approx. 3 (4)	0.100
SL-300-25-D-MP3	150.0	6 (12)	100	100	25	10000	800	Approx. 3 (4)	0.200



SLAB Damping Plates for Shock Absorption


Application Examples


Damping in between Pallets

Impact Buffer for Slats, Beams, etc.

Drawer Damping

Door Stopper, i.e., for Glass Doors

Funnel Tube Lining at Assembly Lines

Feed Hopper Lining at Graded Sorter

ACE-SLAB damping plates protect man and machine.

At the beginning of the construction phase of a modern processing center at the end position, a 25 kg cable channel collided with force against the housing and produced a deafening noise and mechanical strain on the energy chain. A reliable solution for compliance with the operational parameters was realized with the **SL-030-25-Dxxxx** type ACE-SLAB damping plates even before the milling machine was finished.

Low-noise energy chain

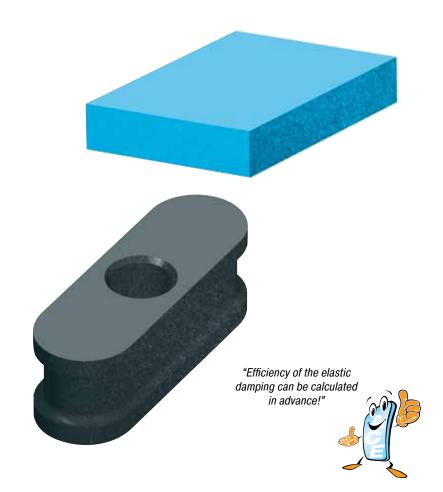
ACE-SLAB damping plates make tire transport safer.

Developed for absorbing the impact of forces, the ACE-SLAB damping plates **SL-030-121-Dxxxx** applied in this tire testing system are ideal for protecting the sliding parts of the machine during quality tests.

The individual customisation of the ring form of the center arm and simple integration into the equipment also support the decision for applying these innovative absorber elements.

With the kind permission of SDS Systemtechnik GmbH, www.sds-systemtechnik.de Perfectly fitted machine protection

Impact reduction in ring form



SLAB damping plates of the **SL-170 to SL-720** are universally applicable elastic PUR materials that are manufactured according to a patented formula and which are used throughout industry. The standard densities of 170 kg/m³ to 720 kg/m³ serve as vibration insulation in a wide variety of applications. For specific applications, special designs with specific densities can be manufactured. The static and dynamic product characteristics are precisely defined. The effectiveness of elastic suspension can be calculated in advance. The necessary parameters are shown on a respective checklist.

The static load capacity of standard materials are in the range of:

SL-170: 0 to 0.011 N/mm² SL-210: 0 to 0.028 N/mm² SL-275: 0 to 0.055 N/mm² SL-450: 0 to 0.15 N/mm² SL-600: 0 to 0.30 N/mm² SL-720: 0 to 0.50 N/mm²

and for special designs up to 0.8 N/mm². Unusual and light loads can withstand forces of 5.0 N/mm². This value can reach up to 6 N/mm² for special designs.

Compression set: \leq 5 %, at 50 % of compression, 23 °C, 70 h, 30 min after unloading, according to EN ISO 1856

Environment: Resistant against ozone and UV radiation (also see chemical resistancy page 18).

Material: Mixed cellular PUR-Elastomer (polyether urethane)

Standard density: 170 kg/m³, 210 kg/m³, 275 kg/m³, 450 kg/m³, 600 kg/m³, 720 kg/m³, special designs on request.

Fire rating: B2, normally flammable according to DIN 4102

Operating temperature range: -30 °C to +70 °C, short-term higher temperature possible.

Delivery form: Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m wide, 5.0 m long. Strips: Up to the maximum width and length. Other dimensions (also thickness), colors, shapes and cut-out parts on request.

Possibilities for cutting: Water jet cutting, stamping, splitting, sawing, drilling etc.

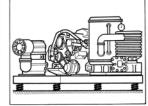
Mounting style: Bonding (see adhesive recommendation page 17), clamps, screws, etc.

On request: Available with compact polyurethane wearing surface, shore hardness: 82 shore Sh A.



SLAB Vibration Damping Plates General Product Description and Design Guidelines

Even load distribution of vibration damping elements are illustrated using the example of a combustion engine

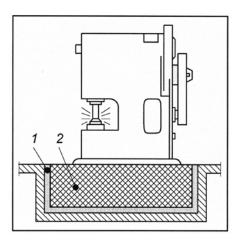

Pay attention to center of gravity

Maximize the bearing's torsional stiffness

Merging of assembly groups (combined elastic bearing)

Use large flex resistant base

plates or machine frames


Mounting of individual equipment components illustrated using the example of a pump

Pay attention to separate flexible mounts of connected equipment components

- Pay attention to flexible base plates or machine frames

Full surface mounted eccentric press

- sufficient base size
- modeling
- assure vibration insulation
- static view: center of gravity, deflection
- maximize torsional stiffness
- dynamic view: forces, torques, amplitude

1 Vibration damping 2 Concrete base

Source: SUVA, Elastic Bearing of Machines

Machines generate vibrations which are transmitted to the surroundings. They can influence the manufacturing process of other machines and thereby the quality of the products.

Vibrations disrupt the location and the environment and cause damage to buildings. SLAB polyurethane elastomer is a material that effectively reduces vibration and structure-borne noise. Depending on the requirements, SLABs are available in different densities, thicknesses and dimensions.

SLAB damping plates are used to insulate vibrations for:

- Machine tools
- Textile machinery
- · Air conditioning and ventilating machines
- Crane rails
- Hydraulic crushers
- · Presses / stamping machines etc.

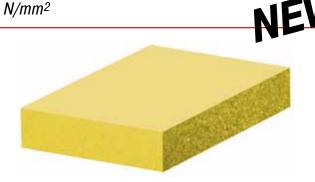
Potential for direct bearing support on SLAB damping plates:

Full surface mount

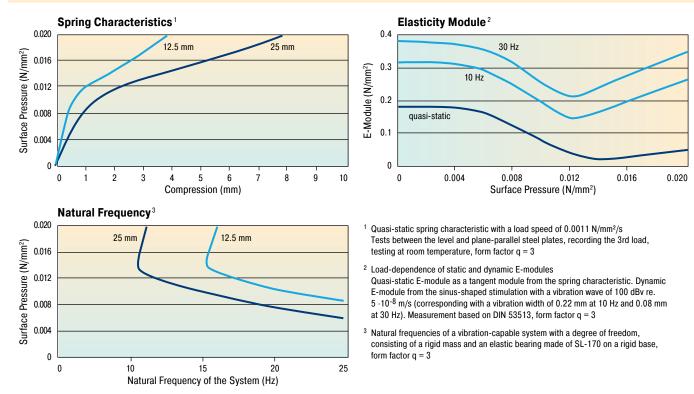
Strip bearings

Discrete bearings

Vibration Damping Plates Dynamic Load 0 to 0.016 N/mm²


Material Thickness 12.5 mm	
Customers Specific Dimension/Shape	
(F-Number is assigned by ACE)	

Recommendation for Elastic Bearing


 Static application range (static loads):
 0 to 0.011 N/mm²

 Dynamic range (static and dynamic loads):
 0 to 0.016 N/mm²

 Peak loads (rare, brief loads):
 up to 0.5 N/mm²

Characteristics

Technical Data

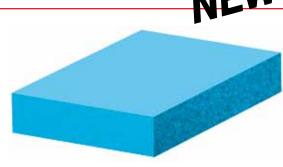
Characteristics: Elastic PUR material with spring/absorber properties **Delivery form:** Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m wide and 5.0 m long. Strips: max. 1.5 m wide, 5 m long. Other dimensions (also thickness), colors, shapes and cut-out parts upon request.

Material: Mixed-cell polyetherurethane Standard color: Yellow

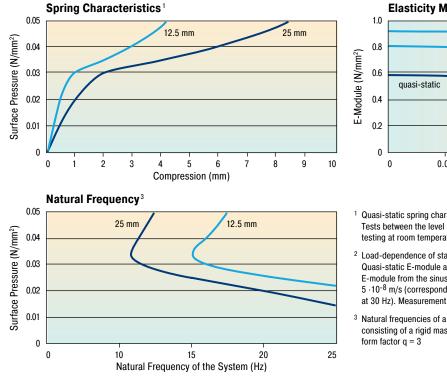
Physical Characteristics

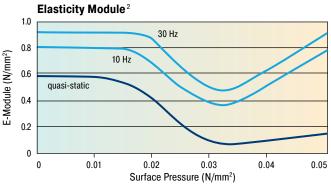
		Test Procedure	Comment
		lest roccuire	Comment
Density	170 kg/m ³		
Mechanical loss factor	η = 0.25	DIN 53513*	dependent on frequency, load and amplitude
Impact resilience	45 %	DIN 53573	
Static modulus of rigidity	0.03 N/mm ²	DIN ISO 1827*	with preload of 0.011 N/mm ²
Dynamic modulus of rigidity	0.10 N/mm ²	DIN ISO 1827*	with preload of 0.011 N/mm ² , 10 Hz
Tensile strength	0.3 N/mm ²	EN ISO 527-3/5/100*	minimum value
Elongation at break	300 %	EN ISO 527-3/5/100*	minimum value
Friction value (steel)	$\mu_{\rm S} = 0.5$		dry
Friction value (concrete)	$\mu_{\rm B} = 0.7$		dry
Abrasion	1400 mm ³	DIN 53516	2.5 N load, lower membrane

Vibration Damping Plates Dynamic Load 0 to 0.042 N/mm²


Ordering Example

SL-21	0-12-	Fxxxx
-------	-------	-------


ACE-SLAB	↑ ↑	† †
Material Type		
Material Thickness 12.5 mm		
Customers Specific Dimension/Shape		
(F-Number is assigned by ACE)		


Recommendation for Elastic Bearing

Static application range (static loads):	0 to 0.028 N/mm ²
Dynamic range (static and dynamic loads):	0 to 0.042 N/mm ²
Peak loads (rare, brief loads):	up to 1.0 N/mm ²

Characteristics

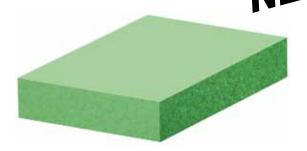
- 1 Quasi-static spring characteristic with a load speed of 0.0028 N/mm²/s Tests between the level and plane-parallel steel plates, recording the 3rd load, testing at room temperature, form factor q = 3
- 2 Load-dependence of static and dynamic E-modules Quasi-static E-module as a tangent module from the spring characteristic. Dynamic E-module from the sinus-shaped stimulation with a vibration wave of 100 dBv re. $5\cdot10^{-8}$ m/s (corresponding with a vibration width of 0.22 mm at 10 Hz and 0.08 mm at 30 Hz). Measurement based on DIN 53513, form factor q = 3
- $^3\,$ Natural frequencies of a vibration-capable system with a degree of freedom, consisting of a rigid mass and an elastic bearing made of SL-210 on a rigid base, form factor q = 3

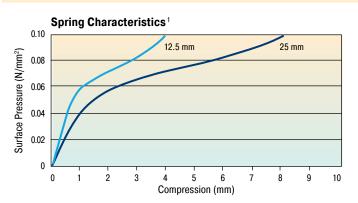
Technical Data

Characteristics: Elastic PUR material with spring/absorber properties **Delivery form:** Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m wide and 5.0 m long. Strips: max. 1.5 m wide, 5 m long. Other dimensions (also thickness), colors, shapes and cut-out parts upon request. Material: Mixed-cell polyetherurethane Standard color: Blue

Physical Characteristics

		Test Procedure	Comment
Density	210 kg/m ³		
Mechanical loss factor	η = 0.21	DIN 53513*	dependent on frequency, load and amplitude
Impact resilience	45 %	DIN 53573	
Static modulus of rigidity	0.07 N/mm ²	DIN ISO 1827*	with preload of 0.028 N/mm ²
Dynamic modulus of rigidity	0.15 N/mm ²	DIN ISO 1827*	with preload of 0.028 N/mm ² , 10 Hz
Tensile strength	0,4 N/mm ²	EN ISO 527-3/5/100*	minimum value
Elongation at break	250 %	EN ISO 527-3/5/100*	minimum value
Friction value (steel)	μ _S = 0.5		dry
Friction value (concrete)	$\mu_{\rm B} = 0.7$		dry
Abrasion	1300 mm ³	DIN 53516	5 N load, lower membrane


Vibration Damping Plates Dynamic Load 0 to 0.085 N/mm²


(F-Number is assigned by ACE)

Recommendation for Elastic Bearing

Static application range (static loads):0 to 0.055 N/mm²Dynamic range (static and dynamic loads):0 to 0.085 N/mm²Peak loads (rare, brief loads):up to 2.0 N/mm²

Characteristics

Natural Frequency³ 0.10 12.5 mm 25 mm Surface Pressure (N/mm²) 0.08 0.06 0.04 0.02 0 15 25 0 10 20 Natural Frequency of the System (Hz)

Elasticity Module² 1.5 30 Hz 1.2 10 Hz E-Module (N/mm²) 0.9 quasi-static 0.6 03 0 0 0.02 0.04 0.06 0.08 0.10 Surface Pressure (N/mm²)

Quasi-static spring characteristic with a load speed of 0.0055 N/mm²/s Tests between the level and plane-parallel steel plates, recording the 3rd load, testing at room temperature, form factor q = 3

 2 Load-dependence of static and dynamic E-modules Quasi-static E-module as a tangent module from the spring characteristic. Dynamic E-module from the sinus-shaped stimulation with a vibration wave of 100 dBv re. $5\cdot 10^{-8}$ m/s (corresponding with a vibration width of 0.22 mm at 10 Hz and 0.08 mm at 30 Hz). Measurement based on DIN 53513, form factor q = 3

Natural frequencies of a vibration-capable system with a degree of freedom, consisting of a rigid mass and an elastic bearing made of SL-275 on a rigid base, form factor q=3

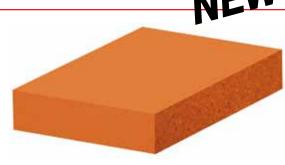
Technical Data

Characteristics: Elastic PUR material with spring/absorber properties **Delivery form:** Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m wide and 5.0 m long. Strips: max. 1.5 m wide, 5 m long. Other dimensions (also thickness), colors, shapes and cut-out parts upon request.

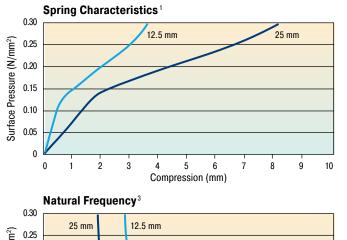
Material: Mixed-cell polyetherurethane Standard color: Green

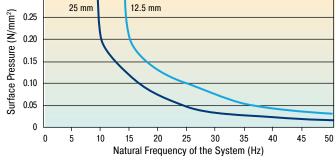
Physical Characteristics Test Procedure Comment 275 kg/m3 Density Mechanical loss factor η = 0.17 DIN 53513* dependent on frequency, load and amplitude Impact resilience 55 % DIN 53573 Static modulus of rigidity 0.13 N/mm² DIN ISO 1827* with preload of 0.055 N/mm² Dynamic modulus of rigidity 0.26 N/mm² DIN ISO 1827* with preload of 0.055 N/mm², 10 Hz Tensile strength 0,6 N/mm² EN ISO 527-3/5/100* minimum value Elongation at break 250 % EN ISO 527-3/5/100* minimum value $\mu_{S} = 0.5$ Friction value (steel) dry Friction value (concrete) $\mu_B=0.7$ dry DIN 53516 7.5 N load, lower membrane 1100 mm³ Abrasion

Vibration Damping Plates Dynamic Load 0 to 0.25 N/mm²


SL-450-12-Fxxxx

Ordering Example


ACE-SLAB	↑	1 1	
Material Type			
Material Thickness 12.5 mm			
Customers Specific Dimension/Shape			
(F-Number is assigned by ACE)			


Recommendation for Elastic Bearing


Static application range (static loads):	0 to 0.15 N/mm ²
Dynamic range (static and dynamic loads):	0 to 0.25 N/mm ²
Peak loads (rare, brief loads):	up to 2.0 N/mm ²

Characteristics

- 1 Quasi-static spring characteristic with a load speed of 0.015 N/mm²/s Tests between the level and plane-parallel steel plates, recording the 3rd load, testing at room temperature, form factor q = 3
- 2 Load-dependence of static and dynamic E-modules Quasi-static E-module as a tangent module from the spring characteristic. Dynamic E-module from the sinus-shaped stimulation with a vibration wave of 100 dBv re. $5\cdot10^{-8}$ m/s (corresponding with a vibration width of 0.22 mm at 10 Hz and 0.08 mm at 30 Hz). Measurement based on DIN 53513, form factor q = 3
- $^3\,$ Natural frequencies of a vibration-capable system with a degree of freedom, consisting of a rigid mass and an elastic bearing made of SL-450 on a rigid base, form factor q = 3

Technical Data

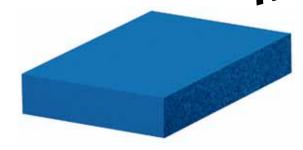
Characteristics: Elastic PUR material with spring/absorber properties **Delivery form:** Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m wide and 5.0 m long. Strips: max. 1.5 m wide, 5 m long. Other dimensions (also thickness), colors, shapes and cut-out parts upon request.

Material: Mixed-cell polyetherurethane Standard color: Orange

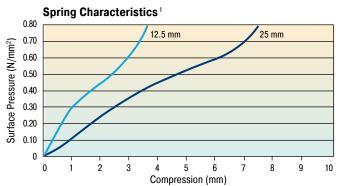
Physical Characteristics

		Test Procedure	Comment
Density	450 kg/m ³		
Mechanical loss factor	η = 0.17	DIN 53513*	dependent on frequency, load and amplitude
Impact resilience	55 %	DIN 53573	
Static modulus of rigidity	0.48 N/mm ²	DIN ISO 1827*	with preload of 0.15 N/mm ²
Dynamic modulus of rigidity	0.76 N/mm ²	DIN ISO 1827*	with preload of 0.15 N/mm ² , 10 Hz
Tensile strength	1,5 N/mm ²	EN ISO 527-3/5/100*	minimum value
Elongation at break	300 %	EN ISO 527-3/5/100*	minimum value
Friction value (steel)	$\mu_{\rm S} = 0.5$		dry
Friction value (concrete)	$\mu_{\rm B} = 0.7$		dry
Abrasion	1150 mm ³	DIN 53516	10 N load, lower membrane
Maasuramant based on the respec	tive norm		

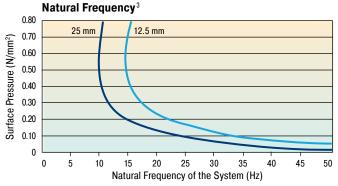
Vibration Damping Plates Dynamic Load 0 to 0.45 N/mm²


(F-Number is assigned by ACE)

Recommendation for Elastic Bearing


 Static application range (static loads):
 0 to 0.30 N/mm²

 Dynamic range (static and dynamic loads):
 0 to 0.45 N/mm²


 Peak loads (rare, brief loads):
 up to 3.0 N/mm²

Characteristics

.....

Elasticity Module² 6.0 30 Hz 5.0 10 Hz E-Module (N/mm²) 4.0 quasi-static 3.0 2.0 1.0 0 0.10 0.20 0.30 0.40 0.50 0.60 0 Surface Pressure (N/mm²)

 1 Quasi-static spring characteristic with a load speed of 0.03 N/mm²/s Tests between the level and plane-parallel steel plates, recording the 3rd load, testing at room temperature, form factor q = 3

² Load-dependence of static and dynamic E-modules Quasi-static E-module as a tangent module from the spring characteristic. Dynamic E-module from the sinus-shaped stimulation with a vibration wave of 100 dBv re. $5 \cdot 10^{-8}$ m/s (corresponding with a vibration width of 0.22 mm at 10 Hz and 0.08 mm at 30 Hz). Measurement based on DIN 53513, form factor q = 3

 $^3\,$ Natural frequencies of a vibration-capable system with a degree of freedom, consisting of a rigid mass and an elastic bearing made of SL-600 on a rigid base, form factor q = 3

Technical Data

Characteristics: Elastic PUR material with spring/absorber properties **Delivery form:** Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m wide and 5.0 m long. Strips: max. 1.5 m wide, 5 m long. Other dimensions (also thickness), colors, shapes and cut-out parts upon request.

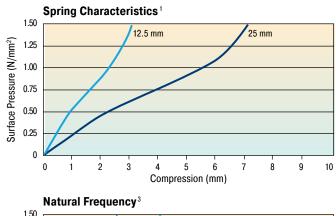
Material: Mixed-cell polyetherurethane Standard color: Blue

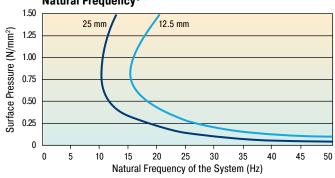
Physical Characteristics

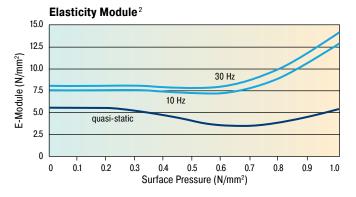
		Test Procedure	Comment
Density	600 kg/m ³		
Mechanical loss factor	$\eta = 0.12$	DIN 53513*	dependent on frequency, load and amplitude
Impact resilience	60 %	DIN 53512	
Static modulus of rigidity	0.8 N/mm ²	DIN ISO 1827*	with preload of 0.30 N/mm ²
Dynamic modulus of rigidity	1.2 N/mm ²	DIN ISO 1827*	with preload of 0.30 N/mm ² , 10 Hz
Tensile strength	2 N/mm ²	EN ISO 527-3/5/100*	minimum value
Elongation at break	300 %	EN ISO 527-3/5/100*	minimum value
Friction value (steel)	μ _S = 0.5		dry
Friction value (concrete)	$\mu_{\rm B} = 0.7$		dry
Abrasion	700 mm ³	DIN 53516	10 N load, lower membrane

Vibration Damping Plates Dynamic Load 0 to 0.75 N/mm²

SL-720-12-Fxxxx


Ordering Example


ACE-SLAB	 ł	1	t	4
Material Type				
Material Thickness 12.5 mm				
Customers Specific Dimension/Shape				
(F-Number is assigned by ACE)				


Recommendation for Elastic Bearing

Static application range (static loads):	0 to 0.50 N/mm ²
Dynamic range (static and dynamic loads):	0 to 0.75 N/mm ²
Peak loads (rare, brief loads):	up to 5.0 N/mm ²

Characteristics

- 1 Quasi-static spring characteristic with a load speed of 0.05 N/mm²/s Tests between the level and plane-parallel steel plates, recording the 3rd load, testing at room temperature, form factor q=3
- 2 Load-dependence of static and dynamic E-modules Quasi-static E-module as a tangent module from the spring characteristic. Dynamic E-module from the sinus-shaped stimulation with a vibration wave of 100 dBv re. $5\cdot 10^{-8}$ m/s (corresponding with a vibration width of 0.22 mm at 10 Hz and 0.08 mm at 30 Hz). Measurement based on DIN 53513, form factor q = 3
- $^3\,$ Natural frequencies of a vibration-capable system with a degree of freedom, consisting of a rigid mass and an elastic bearing made of SL-720 on a rigid base, form factor q = 3

Technical Data

Characteristics: Elastic PUR material with spring/absorber properties **Delivery form:** Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m wide and 5.0 m long. Strips: max. 1.5 m wide, 5 m long. Other dimensions (also thickness), colors, shapes and cut-out parts upon request.

Material: Mixed-cell polyetherurethane Standard color: Black

Physical Characteristics

		Test Procedure	Comment
Density	720 kg/m ³		
Mechanical loss factor	η = 0.12	DIN 53513*	dependent on frequency, load and amplitude
Impact resilience	60 %	DIN 53512	
Static modulus of rigidity	1 N/mm ²	DIN ISO 1827*	with preload of 0.50 N/mm ²
Dynamic modulus of rigidity	1.5 N/mm ²	DIN ISO 1827*	with preload of 0.50 N/mm ² , 10 Hz
Tensile strength	3 N/mm ²	EN ISO 527-3/5/100*	minimum value
Elongation at break	300 %	EN ISO 527-3/5/100*	minimum value
Friction value (steel)	μ _S = 0.5		dry
Friction value (concrete)	$\mu_{\rm B} = 0.7$		dry
Abrasion	350 mm ³	DIN 53516	10 N load, lower membrane

Bonding of Polyurethane (PUR) Elastomers

Cellular and compact parts of polyurethane (PUR) elastomers SLAB damping plates can be bonded according to the following recommendations. If treatment instructions are followed, the strengths of the bonded joint can be equivalent to the elastomer material itself.

1. General Information

To achieve the required bonding strength it is necessary to ensure the correct adhesive is chosen for each individual application.

Contact bonding material: Thin adhesive film, with little filling of the gaps. Correcting or moving of the areas covered with bonding material is no longer possible after the first contact is made (contact effect).

Once a bonding is separated, the bonding process must be renewed.

Please note that creases, ripples or blisters cannot be straightened once the contact is made.

Hardening bonding material: (As thin as possible) the film of glue fills the joint. The gluing can be done after the edges are brought together.

2. Preparation

The preparation of bonding surfaces is of significant importance for the bonding strength. The surfaces must be adapted to each other and available in plain, clean form.

Careful removal of: Adhesive remnants, oil, fat, separating agents, dirt, dust, scales, molding layers, protective coating, finish, paint, sweat etc.

Mechanical support: Stripping, brushing, scraping, grinding, sandblasting.

Chemical support: Degreasing (washing off with grease remover), etching, priming; pay attention to chemical resistancy on page 18.

In general, SLAB damping plates in sheet form can be bonded without pretreatment. Molded parts, with or without special skin, have to be cleaned from left-over separating agents, if necessary by grinding. When bonding with other materials like plastic, wood, metal or concrete, mechanical and/or chemical additives have to be used.

The adhesive has to be prepared according to the formula, observing the manufacturer's recommendations. The adhesive film is also to be carefully applied pursuant to these details. (Tools: brush, spatula, adhesive spreader, airless spray gun).

Contact bonding material: Apply the non-gap-filling adhesive film to both bonding surfaces – the thinner, the better. To close the pores of low density materials, two layers may be necessary.

Hardening bonding material: Apply evenly. Possible irregularities can be compensated by the film thickness.

3. Bonding

When using contact bonding material, the flash off time has to be kept in mind. Especially, with systems containing water instead of usual solvents, the adhesive film must be as dry as possible in order to pass the 'finger test' – no marks appear when touching the adhesive surface. When using hardening bonding material, the parts have to be joined immediately after applying the bonding material.

4. Pressing

Contact bonding material: Contact pressure up to 0.5 N/mm² Hardening bonding material: Fix firmly

It is important to carefully follow the manufacturer's instructions with regard to processing temperature, hardening time and earliest possible loading.

5. Selection of Approved Bonding Materials

For additional information on the variety of materials that can be bonded together as well as the numerous suitable bonding agents, please refer to the information available from Sika Corporation.

Sika Corporation 201 Polito Avenue Lyndhurst, NJ 07071 United States of America Phone: 1-201-933-8800 Fax: 1-201-804-1076 Internet: http://usa.sika.com

Sika Sarnafil 100 Dan Road Canton, MA 02021

United States of America Phone: 1-781-828-5400 Fax: 1-781-828-5365 Internet: http://usa.sarnafil.sika.com

7

SLAB Damping Plates

Chemical Resistance and Sample Sets

Test (following DIN 53428)

Exposure time of the medium: 6 weeks at room temperature, but for concentrated acids and bases as well as solvents: 7 days at room temperature

Evaluation Criteria

Changing of tensile strength and elongation of break (dry samples), change in volume

Evaluation Standard

- 1 Excellent resistance, change in characteristics <10%
- 2 Good resistance, change in characteristics between 10% and 20%
- 3 Conditional resistance, change in characteristics partly above 20%
- 4 Not resistant,

change in characteristics all above 20%

All information is based on our current knowledge and experiences. We reserve the rights for changes towards product refinement.

Chemical Resistance

	SL-030 to SL-300	SL-170 to SL-720	
Water/Watery Solutions			Ac
Water	1	1	Fo
Iron(III) chloride 10 %	1	1	Ac
Sodium carbonate 10 %	1	1	Ph
Sodium chlorate 10 %	1	1	Ni
Sodium chloride 10 %	1	1	Hy
Sodium nitrate 10 %	1	1	Sı
Tensides (div.)	1	1	An
Hydrogen peroxide 3 %	1	1	Ca
Laitance	1	1	Ca
Oils and Greases			So
ASTM Oil No. 1	1	1	Ac
ASTM Oil No. 3	1	2	Di
Laitance	2	2	Ca
Hydraulic oils	depends on cons	istency/additives	GI
Motor oil	1	1	GI
Formwork oil	1	1	CI
High performance grease	1-2	3	M
Railroad switch lubricant	1-2	1-2	Ar

	SL-030 to SL-300	SL-170 to SL-720
Acids and Bases		
Formic acid 5 %	3	3
Acetic acid 5 %	2	2
Phosphoric acid 5 %	1	1
Nitic acid 5 %	4	4
Hydrochloric acid 5 %	1	1
Sulphuric acid 5 %	1	1
Ammonia solution 5 %	1	1
Caustic potash solution 5 %	1	1
Caustic soda solution 5 %	1	1
Solvents		
Acetone	4	4
Diesel/Fuel oil	2	2
Carburetor fuel/Benzine	3	3
Glycerin	1	1
Glycols	1-2	2
Cleaning solvents/Hexane	1	2
Methanol	3	4
Aromatic hydrocarbons	4	4
Other Factors		
Hydrolysis *	1	1
Ozone	1	1
UV radiation and weathering	1-2	1-2
Biological resistance	1	1

 * 28 days, 70 °C, 95 % relative humidity

SLAB Sample Kits for Shock Absorption			
Sample Kit	Includes 1 each Part Number	Dimensions mm	
SL-030-12	250-0800		
	SL-030-12-D-MP1	50 x 50 x 12.5	
	SL-030-12-D-MP2	70.7 x 70.7 x 12.5	
	SL-030-12-D-MP3	100 x 100 x 12.5	
SL-030-25	250-0801		
	SL-030-25-D-MP1	50 x 50 x 25	
	SL-030-25-D-MP2	70.7 x 70.7 x 25	
	SL-030-25-D-MP3	100 x 100 x 25	
SL-100-12	250-0802		
	SL-100-12-D-MP1	50 x 50 x 12.5	
	SL-100-12-D-MP2	70.7 x 70.7 x 12.5	
	SL-100-12-D-MP3	100 x 100 x 12.5	
SL-100-25	250-0803		
	SL-100-25-D-MP1	50 x 50 x 25	
	SL-100-25-D-MP2	70.7 x 70.7 x 25	
	SL-100-25-D-MP3	100 x 100 x 25	
SL-300-12	250-0804		
	SL-300-12-D-MP1	50 x 50 x 12.5	
	SL-300-12-D-MP2	70.7 x 70.7 x 12.5	
	SL-300-12-D-MP3	100 x 100 x 12.5	
SL-300-25	250-0805		
	SL-300-25-D-MP1	50 x 50 x 25	
	SL-300-25-D-MP2	70.7 x 70.7 x 25	

SL-300-25-D-MP3

100 x 100 x 25

Sample Kit	Includes 1 each Part Number	Dimensions mm
SL-170-12/25	250-0806	
	SL-170-12-F-MP4	220 x 150 x 12.5
	SL-170-25-F-MP4	220 x 150 x 25

SLAB Sample Kits for Vibration Damping

SL-210-12/25	250-0807	
	SL-210-12-F-MP4	220 x 150 x 12.5
	SL-210-25-F-MP4	220 x 150 x 25
SL-275-12/25	250-0808	
	SL-275-12-F-MP4	220 x 150 x 12.5
	SL-275-25-F-MP4	220 x 150 x 25
SL-450-12/25	250-0809	
	SL-450-12-F-MP4	220 x 150 x 12.5
	SL-450-25-F-MP4	220 x 150 x 25
SL-600-12/25	250-0810	
	SL-600-12-F-MP4	220 x 150 x 12.5
	SL-600-25-F-MP4	220 x 150 x 25
SL-720-12/25	250-0811	
	SL-720-12-F-MP4	220 x 150 x 12.5
	SL-720-25-F-MP4	220 x 150 x 25

Thickness: 12.5 and 25 mm Consult your ACE Controls distributor or ACE directly for price and availability.

In order to help expedite your application, please fill out the information on this page and forward to the attention of... ACE Applications Engineering at fax number 248-476-2470, or scan and e-mail to shocks@acecontrols.com

1. Description of Application

a)	Description of your application in key words – the kind of machine/device that needs insulation						
b)	Machine design (possibly data sheet with information about loads, installation drawing)						
c)	Static and dynamic machine loads (do these operate off-center?)						
d)	Mounting with foundation: What dimensions are available? Is sideways support necessary?	length yes	no	mm,	width	mm, height	mm
e)	Mounting without foundation: Which machine mount is present (machine stands, U-profile mount. etc.)						mm
f)	Environmental requirements					nperature	°C,
g)	Required product life						
h)	Safety element:	yes	no				

2. Physical Dimensions

a) Measurements and weight of the machine	mass kg	
b) Center of gravity	concentric excentric (sketch)	
c) Operation of the machine, e.g., frequencies or revolutions per minute (exciter frequency)	Hz1/s	
d) Available area for set up	length mm, width mm, diameter mm, number of load points	
e) Maximum mounting height of bearing	height mm, tolerance, +/- mm,	
f) Permissible deflection mm,	permissible amplitudes mm,	
g) Is operational reliability/product life of the machine by the elastic bearing?	yes no	
Special requirements:	Quantity/year:	
	Machine type:	
Sender:		

ochach.	
Company	Department
Address	Name/Pos
	Telephone Fax
Internet	E-mail

ACE Product Catalogs

ACE Controls Inc. is focused on continuous improvement. Therefore, ACE reserves the right to change models, dimensions or specifications without notice or obligation.

ACE Controls Inc. • 23435 Industrial Park Dr. • Farmington Hills, MI 48335 • 800-521-3320 • (248) 476-0213 • Fax (248) 476-2470 www.acecontrols.com • email: shocks@acecontrols.com

ACE Controls Inc., Innovation in Deceleration & Motion Control

For nearly 50 years ACE Controls Inc. has provided deceleration and motion control solutions to meet the application needs of industries such as: automotive, packaging, bottling, defense, RV, machine tool, material handling, theme park, medical, fitness and more.

Headquartered in Farmington Hills, Michigan, ACE is structured with a global customer service network that includes offices and distributors in over 100 cities and 35 countries.

To locate a distributor nearest to your location, please visit the ACE Controls web site at www.acecontrols.com or contact ACE direct at e-mail: shocks@acecontrols.com

Additional ACE Controls Motion Control Products

Industrial & Safety Shock Absorbers

Stainless Steel Shock Absorbers

Velocity Controllers

Gas Springs (Stainless Available)

TUBUS Elastomer Bumpers

Hydraulic Dampers

Rotary Dampers

ACE Controls Inc. • 23435 Industrial Park Dr. • Farmington Hills, MI 48335 • 800-521-3320 • (248) 476-0213 • Fax (248) 476-2470 www.acecontrols.com · email: shocks@acecontrols.com